5 research outputs found

    Fuzzy control system review

    Get PDF
    Overall intelligent control system which runs on fuzzy, genetic and neural algorithm is a promising engine for large –scale development of control systems . Its development relies on creating environments where anthropomorphic tasks can be performed autonomously or proactively with a human operator. Certainly, the ability to control processes with a degree of autonomy is depended on the quality of an intelligent control system envisioned. In this paper, a summary of published techniques for intelligent fuzzy control system is presented to enable a design engineer choose architecture for his particular purpose. Published concepts are grouped according to their functionality. Their respective performances are compared. The various fuzzy techniques are analyzed in terms of their complexity, efficiency, flexibility, start-up behavior and utilization of the controller with reference to an optimum control system condition

    Integrated PLC-fuzzy PID Simulink implemented AVR system

    No full text
    Improving the transient response of power generation systems using automation control in a precise manner is the key issue. We design a fuzzy proportional integral derivative (PID) controller using Matlab and programmable logic controllers (PLCs) for a set point voltage control problem in the automatic voltage regulator (AVR) system. The controller objective is to maintain the terminal voltage all the time under any loads and operational conditions by attaining to the desired range via the regulation of the generator exciter voltage. The main voltage control system uses PLCs to implement the AVR action. The proposed fuzzy controller combines the genetic algorithm (GA), radial-basis function network (RBF-NN) identification and fuzzy logic control to determine the optimal PID controller parameters in AVR system. The RBF tuning for various operating conditions is further employed to develop the rule base of the Sugeno fuzzy system. The fuzzy PID controller (GNFPID) is further designed to transfer in PLCs (STEP 75.5) for implementing the AVR system with improved system response. An inherent interaction between two generator terminal voltage control and excitation current is revealed. The GNFPID controller configures the control signal based on interaction and there by reduces the voltage error and the oscillation in the terminal voltage control process. We achieve an excellent voltage control performance by testing the proposed fuzzy PID controller on a practical AVR system in synchronous generator for improve the transient respons

    Role of Antagonistic Microbes in Management of Phytopathogenic Fungi of Some Important Crops

    No full text
    corecore